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ABSTRACT 

This  paper considers the  problem of numerically  integrating  the  primitive  equations  corresponding  to B 2-level 
model of the  atmosphere  bounded  by  two zonal  walls on  a  spherical  earth.  Inertio-gravitational  motions of the 
external  type  are  filtered a priori;  for  such a constraint  it  is possible to define a stream  function corresponding to  the 
vertically  integrated  motions. A system of integration  is developed for  initial  conditions which  specify the  shear 
wind  vector, the specific  volume, and  the  vorticity of the vertically  integrated flow. Methods  for reducing truncation 
error  and for increasing the  rate of convergence of the elliptic part  are discussed. 

The  question of boundary  conditions  is discussed at length. It is  shown that  the usual  central difference methods 
yield independent  solutions at alternate  points,  thus  providing a source of computational  instability  to which the 
primitive  equations  are  particularly  sensitive.  The  solutions  may  be  made  compatible  by  suitable  computational 
boundary  conditions which  can  be deduced as sufficient  conditions  for  insuring that   the  numerical  solutions  possess 
exact  integrals.  The  application of these  considerations to viscous flow is also  discussed. 

1. INTRODUCTION 

The  object of  this  paper is to discuss some of the prob- 
lems of enlploying the  primitive  equations  as  a  framework 
in which to  study large-scale atmospheric processes. 
These  problems are  to a  large extent connected  with the 
deduction of a stable  and  rational means  for  numerically 
int,egrating  the  primitive  equations. It has been  common 
experience that  the application of the  primitive  equations 
to'large-scale  motions  has suffered from  the  delicate  bal- 
ance  between the Coriolis and pressure-gradient forces 
resulting in relatively  small  accelerations and  horizontal 
divergcnce. Therefore, attempts  to  integrate  the primi- 
tive  equations  numerically  can be successful only if the 
problem stated  in numerical  form  is  properly  compatible 
with  the  system of continuous  (differential)  equations. 
Slight  incompatibilities (e.g., incorrect boundary condi- 
tions) in  systems which are  not  sensitive  in  this  manner, 
e.g.,  those admitting only  gravitational  motions or only 
Rossby wave solutions, apparently do not produce a very 
rapid degeneracy. 

The  pnrticular  system of equations,  and  the domain of 
integration  to be discussed, has been designed in essence 
to  form  the  hydrodynamic  framework for numerical 
studies of the  dynamics of the general  circulation. How- 
ever,  those  physical Considerations which  do not directly 
or  crucially  bear  on the  present objective of establishing 
a stable  mat,hematical  and  hydrodynamic framework  will 
be omitted here. A t  the  time of the  preparation of this 
manuscript,  stable  numerical  integrations  had been per- 
formed  over  periods  in excess of 50 a.tmosphere  days u-it.hin 
the  context of the  system  and  methods to be described. 
The physical  considerations  directly  bearing on  t'he con- 
struction of t,his general  circulation  model, t,ogether with 
the  results of the  integrations, will  form the  subject of a 
later  report. 

2. NON-LINEAR BAROCLINIC  FLOWS 
a. DIFFERENTIAL EQUATIONS 

The  equations of motion in spherical coordinates with 
height as the  vertical  r.oordinnte  are (see for  instance 
ITaurwitz [6]) : 
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458 MONTHLY  WEATHER  REVIEW 

in which X is the  longitude, positive eastward; e is the 
latitude; r is the  radial  distance  from  the  center of the 
earth; m =sec e; a =sin e; Q is the  angular velocity of the 
earth's  rotation; p is the  density; p is the  pressure; g is 
the acceleration of gravity; F= i Fx+j FO is the  horizontal 
component of the  frictional force vector, F, its vertical 
component, and i and j are  the  unit  vectors  in  the X and e 
directions; and ( *  ) =d ( ) /a t  is the  time change on a material 
particle. The effect of the ellipsoidal shape of the  earth 
in balancing the centrifugal accelerations has  already  been 
taken into account. 

The kinetic energy equation  for non-hydrostatic motions 
is obtained  by  multiplying (la),  (lb),  and  (IC)  by r i / m ,  
rd, and i., respectively, and adding  the  resulting  equations: 

-gi.+- r i  Fh+rdFe+i.Fr. (2a) m 

If we constrain  the motions to be  quasi-static,  then  (IC) 
becomes 

I n  this case, the  individual  change of kinetic  energy of the 
horizontal motions  calculated  from (la)  and  (lb) no longer 
only depends on the work  done by  the pressure gradient 
and external forces. A  correct  kinetic  energy  equation 
consistent with the  quasi-static  approximation  can  be 
derived if: 

(i) the  terms 2(i\+Q) i./m and"2id-are dropped-from 
(la)  and  (Ib) respectively, and 

(ii) where r appears  undifferentiated  in (la)  and  (lb), 
i t  is replaced by a, the  mean  radius of the  earth. 

The  kinetic energy equation  for  quasi-static motions 
then becomes 

Furthermore,  the  quasi-static  assumption  permits us to 
transform the resulting horizontal  equations of motion  and 
the  hydrostatic  equation  to  a  coordinate  system in which 
p is the vertical coordinate (Eliassen [2])  : 

&+- 0 2 .  m ( X + 2 Q ) i = - ~ 3 + F 0  a ae 
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(5) 

where +=g(r-a) is the geopotential and 

Differentiations with respect to t ,  X, and 0 are now  in a 
constant pressure surface. 

The continuity  equation is 
dW D+-=O 
aP 

where 

The  thermodynamic energy equation is 

1 (In e)=- 4. 

ln e=const+ (1°K) ln p+ln (') 
and8  is the  potential  temperature; T is the  temperature; 
(l-K)=C,/Cp is the  ratio of the specific heat of air at 
constant volume to  that  at  constant pressure; 4 is the non- 
adiabatic  heat  added or removed per unit mass per unit 
time. 

Anticipating  our  ultimate needs for the numerical 
integration, we  will conformally map  the  sphere onto a 
Mercator projection. We denote  the  map coordinates by 
z and y ,  positive in the  easterly  and  northerly directions, 
respectively. For  this projection the  map scale factor is 
m=sec e, so that 

(9) 

where C P T  

dz=adX 
dy=amdO 

and 
X=aX I 

It will be convenient to deal with  the map velocity com- 
ponents: 

V=iu+jv 

uEx=aX 

* I (11) 
v=i=arne 

where the  earth velocity is  VJm. The following  scalar 
and vector transformations will be useful: 
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Here v.B has been defined as  a 2-dimensional operator The viscosity will be discussed in  Section 2b. 
in  the x"y plane and curl B is  a  scalar which has  been  de- The thermodynamic  energy  equation (8 )  is applied at 
fined  as the vertical  component of the usual vXB vector. k=2. The horizontal  wind  in (16) is  evaluated  by the 

Equations (3), (4), and (7) become upon being mapped:  arithmetic  mean 
2v2=v,+v3=J. 

v= - m 2  *+ mFz 
b X  (13) Hence (8) becomes, upon  applying the  hydrostatic and 

gas  equations, 

in which 2y2 = (Ap)' (b$/bp) (a In e/ap) =; ;/e2 is  taken 
where as a  constant  and Q=PAp/pz. We shall not specify the 

nature of the external heat source, Q, since it is not 
(16) germane to  the  present discussion. 

We now construct  a 2-level model in  the fashion of 
Eliassen [4]. The atmosphere is divided in the vertical 

Upon  substituting (22) into (20) then  the system 
(19) and (23)  provides 5 scalar  equations  in 6 unknowns: 
uk,  vk, &. The sixth  equation  is  provided  by  the require- 

into equal  Pressure 'PI2, such that 'P % ment  that  the meall motions  remain  nondivergent.  Form- 
p k - k l " P k - 1  and ', ', 3 7  4* We take AP=500 mb* ing a from (19) according to (15) and  setting it to 

The upper  boundary  condition  must  be zero we have 

We exclude external  gravitational  propagation  by  requir- 
ing that w EO at  the lower boundary  which  is  taken  to 
coincide with the pressure  coordinate  surface p,=lOOO 
mb.  Therefore,  applying (6) at  k=1, 3, we have that 

in which w1 and w3 have  been  linearly  interpolated  from 
the neighboring levels. 

Applying the  equations of motion (13) and (14) at  
k= 1, 3, we have 

which is the "divergence" equation  corresponding to  the 
vertically  integrated flow. We shall  refer to this  system 
as  System I. 

Alternatively we may define a  stream function IC. for the 
vertically  integrated flow: 

Hence the  stream function  tendency IC.* zsb+/bt in the 
equations of motion (1 9) gives: 

Taking  the curl of (26) and (27) yields 

v2+*=cur1'1. (28) 

This of course is the  vorticity  equation governing the 
vertically  integrated flow. If we now form the equations 

+i [u z + m v  av * + w  *+au (2+2~)]- (20) 
of motion  for the shear  wind 0 from (19) 

b7J aP a A av A 

It will be useful a t  this  point  to  adopt  the  notation -=mG-m& at (29) 

(-)=01+03;  (*>=(>1-(>3* (21) then  equations (23), (28), and (29), which will be  referred 

The vertical  momentum transport in (20) is  calculated by to as System 'I, 'OnstitUte equations in the 
evaluating  the vertical wind shear  non-centrally, and unknowns J.*, &, ̂ v, f .  3 is proportional to the specific 
applying the  continuity equation  (18): volume. Because the  history of the vertically  inte- grated Bow in  this  system  is  carried in $, 3 never is calcu- 

lated explicitly. 
(22) Hence the  constraint of filtering the external  gravitational 
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solutions, which dictates  the elliptic  balance  condition (24) 
in  System I or (28) in  System 11, yields a system of 
equations which is  a  combined  marching-jury  problem. 
Without  this  constraint, the primitive  equations  are 
completely hyperbolic and  constitute  a  pure marching 
problem. 

b. PHYSICAL LATERAL BOUNDARY  CONDITIONS  AND  THE 
VISCOSITY 

We t8ake as the domain of integration a zonal strip 
bounded by two latitudinal walls a t  y=O and y = Y .  The 
walls are  taken  to be perfectly  smooth. In  the x direc- 
tion we assume cyclic continuity so that all  dependent 
variables  and  their  derivatives a,re continuous. At  the 
walls we must impose the  kinematic  boundary condition 

vk=O a t  y=O, Y for  all t (30) 

which by (25) and (27) requires the boundaries to be  a 
streamline a t  each  level  for  all t ,  giving the corollary 
physical  boundary  conditions 

$, #* independent of x on y=O, Y .  (31) 

It will  suffice for our present  purposes to  postulate 
only a  lateral  viscosity of the Navier-Stokes  type. 
Physically it is  desirable that  the form of this viscosity 
be such that  the walls do not affect the  total zonal  angular 
momentum  nor the  total energy  (through  the  kinetic 
energy). This smoothness  condition will provide  us 
with  a second physical  boundary  condition.  Such  a  form 
is 

where K is  assumed  constant. We will now demonstrate 
that  this form  does  indeed possess the above  properties. 

The change of the  total  relative zonal  angular  mo- 
mentum  per unit mass is 

Hence the  contribution from F can  be  calculated  from 
(19) and (32) to  be 

Fz dxdy=aKLy$ [" b~ (- ma  1 -) b x  bu 

The first  term  on the  right side must vanish  due to  the 
cyclic continuity  condition,  leaving 

(35) 

The change of total kinetic  energy is 

(36) 
so that  the  contribution of F is 

where we have  integrated  by  parts. The first  term on the 
right side  represents the energy  dissipation  within the 
atmosphere and is negative  definite. The second integral 
becomes, upon  applying the cyclic continuity condition 
and  the  kinematic  boundary condition (30), 

Upon  comparing (38) and (35), we observe that  to prevent 
lateral  boundary influence on both  the  total angular 
momentum  and  total  kinetic  energy we must impose the 
physical  boundary  condition 

(39) 

i.e., the  lateral stress must  vanish  on each boundary 
individually. 

c. INITIAL  CONDITIONS  AND  TIME  INTEGRATION 

It will be  shown  in the discussion which follows that a 
sufficient set of initial  conditions are: 

u, v , $ , l ,  given everywhere * A A -  

where the vertical  component of relative  vorticity  is 

From (25), the vertically  integrated  vorticity  may be 
written  as - 

{=VW (42) 

By  virtue of the two  physical  boundary  conditions (30) 
and (39) we have  the corollary  condition 

Hence (42) and (43) constitute  a  Neumann boundary 
value  problem. # ma.y thus be  determined  everywhere to 
within an  arbitrary  constant.  System (42) and (43) may 
be  transformed  into  a  Dirichlet  problem since # must be 
a constant on y=O,Y. Taking $=O on y=O, then inte- 



grating (42), we have 

L E  dx. 9 I 
Ti and 7 may  t,herefore  be  calculated  on the interior.  Note 
that since fi must  be  independent of z on y=O, Y, then 1 (Z/mz)dy must  be  independent of x; i.e.,  zonally 

Y 

symmetric.  Furthermore,cyclic  continuity  requires that 9 Vdz=O. Equation (42) need only be solved initially 

since the ellipticity  condition (24) or alternatively (28) 
solved at  each  time  insures that 5 remain zero. 

With Ti and V thus  obtained  everywhere and 6 and $ 
having been prescribed  everywhere  initially, one can  calcu- 
late  the wind components a t  each level from the  identities 
(21). The completion of the  set of initial  data necessary 
to  integrate timewise will depend  on  whether we employ 
System I or 11. 

For  System I it is necessary  to solve (24), subject  to  an 
appropriate  boundary  condition.  This is provided by re- 
quiring that (30) be  satisfied  for  all  time  in (27)) resulting 
in the corollary  condition 

d3 zy 
by-m 
" on y=O, Y.  (45) 

Hence (24) and (45) constitute  a  Neumann  boundary 
value  problem  for which gV and v. must  be known on 
the boundaries.  With 3 found as  a solution of (24) and 
4 having been given initially, +, may  be  calculated  from 
(21), so that  the six dependent  variables uk,  vk, 4, are 
known  initially. V, and 4 may  then be calculated at  the 
next  time  from (19) and (23). The new v k  fields are 
then used to  invert (24) giving 3 and  hence +a at  the new 
time. Thus all of the initial  dependent  variables  have 
been  reconstructed.  System I is  in essence the one  pro- 
posed by Eliassen [4]. 

To proceed by means of System 11, we need first  to 
determine the corollary  boundary  conditions  for (28). 
These  are  obtained by  integrating (26) over the  entire 
region and  then applying the cyclic continuity  condition: 
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Since #* is  independent of x on y=O, Y, we set  the  arbitrary 
datum 

#* (O)=B 
so that - 

#*(Y) = -1 LY$ $ dxdy. L. 

(47) 

Since the  initial # has been set  to zero on y=O, then $ 
must remain zero on y=O for  all  time. 

Therefore,  System I1 requires the solution of a  Dirichlet 
boundary  value  problem. The field #* together  with the 
initial J/ then  permits us to calculate t a t  the next  time. 
Equation (29), which depends  on 3 but  not on $, gives 
us the new 9. As before fi and \j, together yield V,. 
Finally (23) gives the new 4. The  data have therefore 
been reconstructed. 

It will be useful a t  this  point  to digress for the purpose 
of discussing some of the  computational  stability charac- 
teristics of the  system of equations  with which we are 
dealing. 

3. COMPUTATIONAL STABILITY 
The Courant-Friedrichs-Lewy (CFL)  stability  criterion 

is for the  most  part governed by  the speed of the  internal 
gravitational  waves  relative  to  the mesh (Eliassen [4]): 

(49) 

where As is the horizontal  grid  distance  on the  earth, and 
At the  time  increment.  Suppose we take AA to be 5O 
longitude, then at  the  equator As=555 km. If we take 
the zonal  channel to be 17 grid  lengths wide, with y=O 
at  the  equator,  then y = Y  corresponds to 64.4' latitude. 
Therefore As has  its smallest  value, 240 km., a t  the  north 
boundary. For an average  value of the  static  stability, 
r=60  m. sec.". Then for At=20 min. the criterion is 
fulfilled when - 

<80m. set.-* 2 -  

Hence  one would presume that if (49) were satisfied, the 
numerical  integration  should  remain  stable  under  the 
customary  techniques of centered differences. The ex- 
perience of a  number of research  workers  in the  past 6 or 
7 years  has  been  t.hat  attempts  at numerical  integration 
of very  simple  physical  systems (such as non-viscous 
barotropic flows) in  the framework of the primitive  equa- 
tions,  have  resulted  in  spurious  inertio-gravitational oscil- 
lations which obscured the meteorologically significant 
motions  even when the  CFL criterion was satisfied. In- 
vestigations by  the  Princeton group  (Charney [l]) disclose 
that one  cause  can  be an incorrectly specified initial 
velocity field. I n  the present case this corresponds to 

which is  never specifled independently  but is  derived 
- from  the  initially specifled vertically  integrated  vorticity, 
{, through  equation (42). Another  possibility offered by 
Charney  for  the  apparently spurious  oscillations is com- 
putational  instability  due  to  incorrect  boundary condi- 
tions. It is this  latter source of instability that will be 
dwelt  upon  here. The  nature of the  instability will be 
demonstrated  in less rigorous  fashion than is  normally 
possible by  an analysis of the amplification of small- 
scale  motions. 

As 8 matter of convenience we shall re fer  to instability 
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resulting from  incorrect boundary conditions as com- 
putational  instability of the second kind (in contrast  to  the 
CFL instability which may  be considered as that of the 
j irs t   k ind) .  As it turns  out  this  instability is  already 
possible in the  linear zonally  symmetric  equations cor- 
responding to the model described in  the previous  section, 
This is rather  fortunate since  such  a  simple  system  lends 
itself to a rather clear-cut  analysis. 

Let us consider zonally  symmetric  perturbations on 
a  vertically  integrated flow  which is a t  rest. At first we 
will deal  with non-viscous, thermally  inactive  motions. 

Assuming for the  present  that a and m may be replaced 
by their  average values, then  equation (23)  becomes 

and  the equations of motion  for  the  shear flow (29 )  become 

aa. -=2aQ28 a t  

We take  the  domain  as  before  to lie between two latitudinal 
walls so that  the physical boundary condition is 

@=O on y=O, Y for all t .  (53) 

The  initial conditions are 4, 22, 8, given  everywhere, the 
latter  subject  to (53 ) .  Also, to  satisfy (52)  and (53), 
2aQG+rnZa&dy=O on  the  boundaries initially as well as 
in  the interior of time.  Hence the time-dependent  equa- 
tions (50-52) constitute a  complete set  and we have a 
pure  marching problem. 

We  form the difference analogues of the  three first- 
order  equations (50-52), employing  central differences 
over intervals At and Ay where t=rAt and y= jAy ,  
O<j<(J--l) .  

(54) 

(55) 

It will be  instructive  to  form  a single differential  equa- 
tion in 6 from (50-52) 

(57) 

where f=2aQ, r =my. Then differencing (57) centrally, 
we have 

TABLE 1.-Compatibility of three dependent  variables c, c, and 4. 
- __- 

Is physical 
boundary condition 

satisfied at- 

j=o  I + ( ~ - 1 )  

1 Solutions for ;, at  odd j and $ at  evenj ____..____________ 

Even Solutions for $, at  even j and $ at  odd j" - - .______._____ 

Yes No 

No No  Solutions for u ,  u at  odd j and $ at even j - -  - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
No Yes 

Odd J{ Solutions for 0, u at  evenj  and $ at  odd j".  .____._._______ Yes Ye3 

* A  

* I  

If we use (56) initially to  obtain 6; as a function of 6;' in 
terms of the  initial conditions,$ 'j,  $j, $'j, given everywhere, 
then (58) may be solved as  a  marching  problem with no 
difficulty in  satisfying (53) at  both boundaries j=O, (J-1). 
This process will  proceed stably provided the CFL condi- 
tion is met.  However, if we form  the difference equation 
in v^ from  the first-order difference equations (54-56) 

we find it exactly  in the form of (58) except that (59) 
applies to  double  time and space  intervals. Therefore, 
the  ratio At/Ay is preserved and  the CFL criterion remains 
the same. We now note  that  in (59) v^ is linked only at 
dternate values of j as well as of T.* Consider the case 
when J is  odd.  Then (59) applied at  even j satisfies (53) 
at both boundaries.  On the  other  hand, applicat,ion of 
(59) a t  odd j cannot  directly  satisfy (53) a t  either boundary 
since the finite  difference  equivalent of d6/dy is required. 
Alternatively, consider the case of even J. Now  the 
application of (59) a t  even j will satisfy  the physical 
boundary  condition at  j = O  but  not  at j=(J-1), whereas 
solutions at  odd j will not  satisfy (53) at j = O  but will at 
j=(J-l). Therefore,  neither  solution is compatible with 
the physical  conditions a t  both boundaries. That is, 
solutions at   evenj require &3/dy a t j=(J -  l), and solutions 
a t  odd j require &?/by at j = O .  Returning  to  the system 
of first-order  equations (54-56), we can also see the con- 
sequences on 4i and $ for  even and odd J. The com- 
patibility of the  three  dependent  variables is summarized 
in table 1. 

It is clear that corollary boundary  conditions can be 
deduced from the  system of differential  equations (50-52) 
and  the physical condition (53). From (51) we see that 
bG/dt=O; different,iating (52) timewise yields d2$/btby=0; 
differentiating (50) with  respect to y yields d2$/by2=0. 
These,  however, do not provide the conditions  for &/dy. 

The condition on &/dy must be such  as to yield com- 
patible  solutions at  adjacent  points  and hence  must 
depend not  only  on  the differential  equations  and the 
physical boundary conditions, but also on  their form 
when differencing is performed and  on  the method of 
differencing. We will refer to  such  conditions as com- 
putational  boundary  conditions. 

by Plstzmrrn [7] which a160 points out thig propertp of central differencing techniques. 
*During  the  preparation of this  manuscript  the writer's sttention was drawn to a paper 
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Heuristically it appears  reasonable that numerical 
integration between the boundaries of the difference 
analogue of the  quantity for which a  computational 
boundary  condition is required  must  correspond  exactly 
to the integral of its continuous  form. 

Let  this  quantity be  denoted  in  general by bx/by, 
where x is known on y=O,Y as  a physical  condition  or 
as  a  corollary.  Therefore the  integral of bx/by: 

soy dy=x(Y)-x(0) 

is exact  and  known. The finite difference sum over all 
points  equivalent  to the left  side of (60) is 

In  the case of central differences 

Substituting (62) in (61) and  equating  to  the  right  side 
of (60) 

1 1 5-2 

4 [(xl-x-l) + (xJ-xJ-2)1$- 2 j = 1  (~jl+l-~~-l)=~J-l-&~ 

(63) 

Upon  casrying out  the indicated  summation we have 

(xJ--BxJ-1SxJ-2)= (x1--2xo+x-1) (64) 

which  is the difference analogue of the condition that 
b2 x/by2 be  equal at  the boundaries. A suscknt condition 
to satisfy (64) is that  the  left  and  right sides vanish 
individually so that 

Equations (65) are  the required  computational  bound- 
ary conditions. They  are equivalent to  the  requirement 
that bx/by be calculated at  the boundaries by means of 
one-sided differences over a  single  grid  interval. This 
result is intuitively  acceptable  and  might  have been 
arrived at  without  the a priori requirement that  the exact 
integral  condition  be  satisfied. It is of interest that 
Phillips, in  a  recent successful integration of the baro- 
tropic  primitive  equations  for  a fluid with  a  free  surface 
in  a  hemispheric  domain  bounded by  an  equatorial wall, 
applied  anti-symmetry  conditions  on  the wind component 
normal to  the  boundary.*  This  may  be deduced as a 
consequence of (64). The exact  integral  condition  has 
provided  a  sufficient  condition  for  deriving the  computa- 
tional  boundary  conditions. The sufficiency has only 
been established  empirically; i. e.  through  extended  period 

earlier paper by Phillips 161. 
*These results are as yet unpublished, but a reference $x this condition is given in an 

integrations. It is not as yet clear what  the necessary and 
suscient conditions must be. 

It is to be  emphasized that  the computational  boundary 
conditions will depend  on the  form of the differential 
equations which are differenced and  the difference tech- 
nique;  for  instance, whether  derivations of products  are 
carried out before differencing. In  particular (58) does 
not  require any  computational  boundary conditions at  all. 
The case of system (54-56), as we have seen, requires 
%/&J. Applying the physical  condition (53) to (65) we 
have 

and  the problem  for  zonally-symmetric  linear  motion is 
completely stated for  numerical  integration. 

Let us now proceed to  a somewhat  more complex case- 
that of viscous flow with  external  heating RQ/cp, which 
will assume  a given function of y. 

We will now consider the effect of a  lateral viscosity 
and  heating  in  the  linear  zonally  symmetric  system.  The 
system of equations  is  then 

(68) 

From the considerations of the non-symmetric  system in 
Section 2, we have two physical  boundary  conditions 

$=o on y=o, Y (70) 

& -=O on y=O, Y. 
by 

The initial  conditions  are the same as before: 3, 2, 6 
given  everywhere  subject  to (70), and we still  have a 
pure marching problem;  On the boundaries &/bt is 
known  from (70), and  in (67) is known if &/by is 
calculated  from the  computational  boundary  condition 
(66), as before. For &/at in (68) we need an additional 
computational  condition  on b2&/dy2. This  is  obtained by 
taking a&/ay for x in (65) and applying (71), then  the 
exact  integral  condition  yields: 

It should be pointed out  that central time and e p w  
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differences applied to (68) and (69) will, due  to  the 
viscosity, give rise to equations of the  form 

%+l-&T-l= 1 . . . -( m2K4At  );;. 
(AY) 

(73) 

Hence a  spurious  computational  solution  is  introduced 
that  is  unstable when the coefficient K>O, which it is  in 
this case. One  means  for  avoiding it is to  evaluate &, on 
the  right side at  ( r -  1). We  may refer to  this  as compu- 
tational instability of the third  kind, which is  thoroughly 
discussed by Eliassen [3] and  Richtmyer [8]. 

4. NON-LINEAR  BAROCLINIC FLOWS (CONTINUED) 

a. COMPUTATIONAL BOUNDARY CONDITIONS 

We may now  proceed to complete the discussion of the 
numerical integration of the fully  non-linear, zonally 
asymmetric  system described in Section 2. 

It is appropriate a t  this  time  to  compare  the  merits of 
Systems I and 11. Perhaps  the  most  important considera- 
tion  is  their  relative stability  under numerical  integration. 
The purpose of the elliptic  equations is to insure that 
bi j jb t  = O .  System I1 does this  directly  by  regenerating 
the  stream  function.  Hence by definition, truncation 
and round-off errors cannot  introduce divergence into  the 
V field computed  from it. On  the  other  hand,  by work- 
ing through ; in  System I, there is no  way of avoiding 
degeneracy (Le., the  introduction of spurious g#O) due 
to  truncation  and round-off except  through periodic re- 
balancing by means of (42), assuming ? to be essentially 
correct. One further  advantage  in  favor of System I1 is 
that  the numerical  solution of Dirichlet problems by 
relaxation  methods seems to converge more  rapidly  than 
that for Neumann  problems. This  may be due  only to 
the  fact  that we have  far  greater experience with  Dirichlet 
problems. Nevertheless, it is an  important economical 
consideration where  extended-period  calculations  are con- 
templated.  Therefore, we  will confine ourselves to con- 
sideration of System 11. 

It is desirable that  the form of the continuous  equations 
to be differenced be such that time  changes of zonal 
angular momentum  and  temperature possess exact 
integrals  over the  entire  area. That is, we  wish to avoid 
spurious sources of angular  momentum  and  heating  due 
to  truncation  error  in  the non-linear terms. It is clear 
that  the  potential  and  kinetic energy  integrals will not be 
exact. Furthermore  one should  avoid  terms of the  form 
(73) from appearing  in non-viscous terms if there is a 
possibility of computational  instability of the  third  kind. 
Thus applying (18) to (23) ,  and (18) and (22)  to (20) ,  
we have 

- 

. 

It is clear that because of the cyclic continuity condition 
in x, computational  boundary  conditions  may  be necessary 
only on the zonal boundaries. We have seen in Section 2c 
that  the  boundary  value problem to  construct  the initial 
y5 field everywhere is completely stated for numerical 
integration,  without need for  a  computational boundary 
condition. This is also true for the  initial v field. 

I n  the time  integration of the geopotential thick- 
ness, +, in (74), we  need 6 on  the boundaries,  and also 
m2b(+'ii/2m2)/dy. Note  that  the  latter would not have 
been necessary had we used the  form  in (23) since 7 
vanishes  on the  boundary. Applying (65 )  we have 

and 

1 5 (77) 

where we have  taken A=Ax=Ay. 

(75) we need in  addition: 
To calculate  inertial  terms, I, on the  boundary from 

The frictional force (32) requires 
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and 

(81) 

In (81), bv/by on  the  boundary  must  be  evaluated con- 
sistently  with  the  calculation of the divergence  on the 
boundary.  For  example, a t  j = O  and referring to (65) 
and (76) we have that 

therefore 

Similarly on the  other b0undar.y 

Heme GI, is known  everywhere  and the  stream  function 
tendency may be  calculated  from (28) and (48). 

1). COMPUTATIONAL  ASPECTS OF THE ELLIPTIC  PART 

We may use the customary  extrapolated  Liebmann re- 
laxation  technique to calculate the  initial # from (42) and 
+* from (28).  The first guess  for + may  be  obtained  by 
integrating (42) with  bounda,ry  condition (43) 

The anterior  superscript  denotes the  iterative index v. 
Equation (84) may also be employed to  hasten  conver- 

gence. As each row is relaxed  within a given  scan, v, the 
mea,n  value of v # c , j  over all i must  satisfy (84). The +'s 
are  then  adjusted accordingly  before going on  to  the 
next row. 

In  the case of $* we have  the source of a  better guess 
through  extrapolation: 

7=0 : O#*O,O 

7=1 : O#*'=#*O } (85) 

7>1 0$,*T,2#*r-1- * T  2. # -  

We may accelerate  convergence of the relaxation of (28) 
by again  adjusting  the  mean value of a newly relaxed row 
to  the  integral of (26): 

This technique  should  be  applied  for  only a few scans 
since the  error  due  to  adjustment quickly becomes  com- 
parable to  the  iterative  error  during  the process of con- 
vergence. Such  integrations  have  been performed on a 
grid of 18 x 72 points  with a relaxation  factor of 1.25 and 
a  criterion 1'+'#*-'#*1/g<(l5/64)m, where g=9.81 m. 
sec-2. The application of (86) was stopped when Jy+l#*- 

'#*l/g< (75/64)m. The number of iterations necessary 
for  convergence  varied  between 2 and 6. 

c. CONSTRUCTION  OF  THE 4 FIELD 

Although the 3 and t& fields  never  enter explicitly 
into  System 11, it  may be of interest  to examine  these 
quantities  during  the course of the calcula4ion. This can 
t e  accomplished  through  integration of equations (26-27) 
by simple quadratures. I n  doing this numerically,  care 
must  be  taken  to  avoid  accumulation of systematic 
truncation  error. That is, the numerical  solution of 
equations (26-27) should  be  independent of the  path 
taken for the numerical  quadratures.  Consider  the 
scheme 

which is precisely the difference analogue of (28). Setting 
an  arbitrary  datum at  a point,  say 6 -0, then one 
can  calculate 5 ,  j+t for j = O ,  . . . , (J- 1) from (88). 
Since i=i+1, then  with (87) we can  obtain 
for i = O ,  . . . , (1-2); j = O ,  . . . , (J-2).  Finally, 
we employ (88) again to calculate $i+ll - and $t+It, J - 3  
for i = O ,  . . . , (1-2). We  now have for 

is sufficient  for an  interpolation of $ a t  the boundaries 
with  a  correct  representation of d$Jdy at  the boundaries. 

4 9 -  4- 

51 + 
i = O ,  . . . , (1-1); j z - 1 ,  0,  1, . . . , (J-1). This 

5. CONCLUDING REMARKS 

We have developed a scheme for numerically  integrating 
the  baroclinic  primitive  equations over a domain with 
closed boundaries. I n  actual application, the methods 
described  have  yielded an analogue of the prirmtive 
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equations which is stable when integrated numerically 
over extended periods. At a  time  when it appeared 
unclear how numerical  integration of the  primitive 
equations  could be  made  free of spurious  gravitational 
instability, J. von  Neumann proposed the inclusion of 
a compressional viscosity  in the  equations of motion 
to suppress the  amplitude of gravitational  disturbances 
of wavelength  comparable to grid size. Since such  a 
viscosity has no physical counterpart, one would expect 
a systematic  distortion of the evolving motions. How- 
ever, it appears  (empirically) that  the  method discussed 
here for formulating  the  computational  boundary condi- 
tions  precludes the occurrence of spurious  gravitational 
instability.  Hence the use of an artificial compressional 
viscosity may  be removed  from  consideration. 

The exact  integral  condition  for  deducing  computa- 
tional  boundary  conditions  must  apply  as well to  the 
form of the baroclinic primitive  equations which also 
admit  external gravitational motions.  Those  mete- 
orological studies  for  domains where  flow through ‘the 
boundaries is  permitted  present  a special problem. The 
reason of course is that a  correct statement of the  appro- 
priate physical boundary conditions is not clear. The 
investigation of Platzman [7] is  a significant contribution 
in  this  direction. 

Experience has  demonstrated that a  consistent use 
of the geostrophic  approximation  can yield great  insight 
into  the large-scale atmospheric processes in spite of the 
obvious limitations  wrought  by  the  restrictive  approxima- 
tions. Historically,  linear  techniques  have played a 
similar role in  providing  a fundamental  understanding 
of dynamical processes a t  the expense of relatively little 
mathematical effort. It appears that  the  step to  com- 
pleteness from  linear  and  geostrophic  investigations is 
most  profitably made  by going directly  to  the  nonlinear 
primitive  equations. The  fundamental simplicity  and 
self consistency inherent  in  the  primitive  equations, 
together with an assurance of stability  under numerica.1 

treatment, would  seem to suggest  this  as the logical 
course. The use of the balance  equations  as  an inter- 
mediate  step offers questionable  diagnostic  gain. This 
conclusion is based on  the dubious  increase of under- 
standing gained in  return for considerable computational 
complexity. 
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